Uduvudu Editor: Creating Mashups on top of
the Semantic Web

Michael Luggen'?

1 University of Fribourg, eXascale Infolab, 1700 Fribourg—Switzerland,
2 Bern University of Applied Sciences, Division of Computer Science,
2500 Biel—Switzerland

Abstract. Highly relevant information in diverse fields of our life be-
come available online, mostly originating from different organizations
and thus also different locations. The need to combine, split and gen-
erally reorganize this information for secondary and personal use cases
naturally evolve with the emerging data. Information publishers aware of
this need, enhance their human optimized representation (HTML) with
a standardized data model like RDF. As the fundament of the semantic
web, RDF provides machine readable formats such as JSON-LD, Turtle
or alike. We propose the Uduvudu Editor which is build on top of the vi-
sualization engine Uduvudu. This powerfull tool allows users with basic
HTML skills to create, in a fast and intuitive way, complex visualiza-
tion on top of the semantic web. The Uduvudu Editor enables through
simple combining and ordering to layout any kind of information regard-
less of their inherent structure. With the Uduvudu Editor we present a
novel interface metaphor which allows the creation of templates for the
Uduvudu Framework. We show that the creation of unlimited, robust
mashups based on top of the semantic web is possible for everybody,
even without knowledge of the underlying mechanics.

1 Introduction

To browse the Semantic Web we need to render and visualize the provided Linked
Data in a human friendly form. There is a plethora of frameworks and tools (see
Table 1) focusing with different ease of use on this task. Often, however, Linked
Data is transformed into less expressive data formats that are then rendered in
a simplistic fashion in the interface. The exported Linked Data typically looses
some of its structure, its semantics and/or some of its links. Handling arbitrary
Linked Data in order to render it properly in a Ul is a singularly tedious task.
Our framework, called Uduvudu, considerably speeds up the development
of Linked Data Uls by streamlining the data extraction, transformation, and
rendering process through an explicit workflow. It allows several types of experts
including data specialists, user interface experts, and graphical designers, to
efficiently collaborate to produce the Ul. The framework is furthermore flexible
and robust, in the sense that it can render any valid RDF data irrespective of
its schema or missing values, and produces reusable Uls and patterns that can

Uduvudu[5] Callimachus[2] Balloon Syn.[7] Fresnel[6] Exhibit[4] LESS[1]
Level of Template Subgraph Application JS Selector Subgraph Subgraph Projection
Description of T. underscore.js RDFa Templates Handlebars Fresnel Formats Exhibit Lenses Smarty
Recursive Use of T. Y N N Y N N
Context Awareness Y N N N N N
Separation of Concerns Y N Y Y N Y
Editor Y Y N N N Y

Table 1. Comparison of frameworks on their template capabilities.

be applied to different contexts and data. To support this process, we introduce
Uduvudu, an architecture dedicated to Linked Data.

In contrast most of the related systems focus on the exploration and visu-
alization of Linked Data. The focus of many systems is hence either on how to
effectively explore large quantities of Linked Data, or on how to compactly ag-
gregate large data to visualize it. Less attention has been given to the case where
a data publisher already knows exactly which parts of the data he/she wants to
visualize. Table 1 summarizes how Uduvudu’s template capabilities compare to
existing systems. As the table indicates, Uduvudu is, to the best of our knowl-
edge, the only framework allowing the flexible description and recursive use of
context-aware templates to visualize Linked Data.

2 Uduvudu

In this section we give an summary of Uduvudu®[5]. This allows us in the last
section to sketch the Uduvudu Editor itself.

There are three main components in the Uduvudu architecture. The Data
Selector, the Structure Matcher and finally the Adaptive Renderer. Figure 1 gives
an overview of our architecture.

Data Selector First, we start with the Data Selector, which decides which
data that will be transformed and rendered.

Any selector which supports classical Linked Data input, e.g., through a
SPARQL query, an RDF/XML dump or triples serialized in one or several text
files can be used. Uduvudu does not expect any inherent structure from the data
(though it must be well-formed), which does not need to comply to any specific
ontology or structure at this stage. Hence, the selector takes as input a superset
of all informations that need to be shown to the end-user, and trim them to an
input graph G containing exactly the information that needs to be rendered.
This step can be facilitated by specialized interfaces targeting again non-expert
users which are not part of this work. [3]

Structure Matcher The second component in our architecture, the Struc-
ture Matcher, holds a catalogue M of known structures (matchers) and tries to
match parts of this catalogue onto the input graph G. The matcher takes as
input an input graph G and one or several corresponding known structures from

3 find more detailed information and the source code of Uduvudu at
http://uduvudu.org

SPARQL

Graph File
App. Logic

G: RDF Graph representing
User Interface Screen
R: Set of Start Resource URIs
>
Matcher
? b
F: Ordered Forest of Structures
with references to Template Sets
bo?< /b span>?< /span Y
% div
2 i=?7</i
Renderer | o 1 7 div
8 7.2 script
= p a=7%b=7
script
S: String of Serialized Output Vi
Desktop

Mobile, Frangais!

Device
- Desktop, User22, Deutsch

User

Fig. 1. Overview of the Uduvudu architecture with the main components Matcher and
Renderer.

its catalogue and returns as output a tree structure with at least one pointer to
a rendering structure from the Renderer. All input data is eventually consumed
through this process.

Adaptive Renderer The adaptive renderer takes as input the tree structure
given by the matcher (F'), the available context variables (language, user, device)
and the provided templates (') to finally render the output. The templates
are written in HTML and access the tree structure through escaped variable
definitions (see Table 2 for details).

Usage Description Example

Delimiters

<h= h> Output variable HTML-escaped. <%~ label.u %>

<h= %> Output variable non-escaped. <= html_desc.u %>

<h h> Execute JavaScript: Use print() for output. <% print(label.u.toUpperCase()) %>
Variables

label.u Literal in context language. <— label.u %>

label.l.en Literal in specific language (lang tag). <- label.u.ja %>

city.label.u Literal deeper in matched structure. <i- city.label.u %>
template(city.label) Rendered template for sub element. <Y~ template(city.label) %>

Table 2. Overview of the most important template commands available.

3 Uduvudu Editor

The Uduvudu Editor is a simple yet intuitive and powerful editor which helps to
create the necessary Matchers and Templates described in the preceding section
in an interactive fashion. As it is possible to render an output at any time, the
editor is simply based on the basic result of Uduvudu incorporating the available
fallback templates.

3.1 Combine and Order

Matchers and their corresponding templates can be added iteratively to create
templates for bigger structures through a combine and order metaphor.

Fribourg edit

Fig. 2 Fig.3. The same interface as in Fig-
Rendering http://dbpedia.org/page/Fribourg ure 2 after the deﬁnltl.on of a matcher
with no templates defined (left), in edit and a template respectively for rdf:label

mode with rdf:label staged (right). and rdf:abstrqct. Further a new combine
matcher merging the mentioned is staged.

Figure 2 shows on the left-hand side one resource rendered using the simple
fallback template rendering. On the right-hand side, a first predicate matcher
(rdf:label) is already staged; by simply clicking on the + icon (shown in edit
mode only), the template was changed to render the literal as an HTML title.

Through the same mechanism (using the + icon), templates can be combined
together to create more expressive templates. This is shown in Figure 3, where
the rdf:label gets combined with a pre-existing rdf:abstract template to form a
new head template. In the staged example, the template of the abstract is reused
(<J%i-template (head.abstract)¥>), while the variable of the rdf:label is accessed
directly (<%-head.label.u%>). This further allows to order the appearance of
the combined facts to the users liking.

3.2 Possible extensions

A more advanced editor allows users to define multiple templates for different
contexts like different devices or languages. The matchers and templates created

in the editor can be persisted in a public or private triple store. It is also possible
to mix-in multiple matchers and template sources, which allows distinct users
to create or adapt the templates to their own needs.

4 Conclusion

We sketched the Uduvudu Editor which provides the power of Uduvudu to the
general public. Through the simple combine and order interface metaphor the
user is able to create complex reusable visualizations without the need to un-
derstand the underlying mechanisms. All this enables the Uduvudu Editor to
create fast and also robust mashups directly on top of the semantic web.

References

1. Séren Auer, Raphael Doehring, and Sebastian Dietzold. LESS - template-based
syndication and presentation of linked data. In Lora Aroyo, Grigoris Antoniou,
Eero Hyvonen, Annette ten Teije, Heiner Stuckenschmidt, Liliana Cabral, and Tania
Tudorache, editors, The Semantic Web: Research and Applications, number 6089 in
Lecture Notes in Computer Science, pages 211-224. Springer Berlin Heidelberg,
January 2010.

2. Steve Battle, David Wood, James Leigh, and Luke Ruth. The Callimachus Project:
RDFa as a Web Template Language. In COLD, 2012.

3. Paolo Bottoni and Miguel Ceriani. Sparql playground: a block programming tool
to experiment with sparql.

4. David F. Huynh, David R. Karger, and Robert C. Miller. Exhibit: Lightweight
structured data publishing. In Proceedings of the 16th International Conference on
World Wide Web, WWW °07, page 737-746, New York, NY, USA, 2007. ACM.

5. Michael Luggen, Adrian Gschwend, Bernhard Anrig, and Philippe Cudré-Mauroux.
Uduvudu: a graph-aware and adaptive Ul engine for linked data. In Proceedings of
the Workshop on Linked Data on the Web, LDOW 2015, co-located with the 24th
International World Wide Web Conference (WWW 2015), Florence, Italy, May
19th, 2015., 2015. http://www.slideshare.net/eXascalelnfolab/ldow2015-uduvudu-
a-graphaware-and-adaptive-ui-engine-for-linked-data.

6. Emmanuel Pietriga, Christian Bizer, David Karger, and Ryan Lee. Fresnel: A
browser-independent presentation vocabulary for RDF. In Isabel Cruz, Stefan
Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter Mika, Mike Uschold,
and Lora M. Aroyo, editors, The Semantic Web - ISWC 2006, number 4273 in Lec-
ture Notes in Computer Science, pages 158-171. Springer Berlin Heidelberg, January
2006.

7. Kai Schlegel, Thomas Weiigerber, Florian Stegmaier, Michael Granitzer, and Har-
ald Kosch. Balloon Synopsis: A jQuery plugin to easily integrate the Semantic Web
in a website. CEUR Workshop Proceedings, 1268, October 2014.

