ICWE RMC 2016: FlexMash 2.0

Pascal Hirmer

Institute of Parallel and Distributed Systems, Universitdt Stuttgart,
pascal .hirmer@ipvs.uni-stuttgart.de
http://www.ipvs.uni-stuttgart.de

Abstract. Today, a multitude of highly-connected applications and
information systems hold, consume and produce huge amounts of hetero-
geneous data. In order to conduct, e.g., data analysis, visualizations or
other value-adding scenarios, it is necessary to integrate specific, relevant
parts of data into a common source. Due to oftentimes changing environ-
ments and dynamic requests, this integration has to support ad-hoc and
flexible data processing capabilities. Furthermore, an iterative and explo-
rative trial-and-error integration based on different data sources has to be
possible. To cope with these challenges, we developed the data mashup
tool FlexMash. In 2015, we presented FlexMash at the ICWE Rapid
Mashup Challenge in Rotterdam. During this event, we gained important
feedback and insights, which inspired us to develop an enhanced version —
FlexMash 2.0. The new version of FlexMash was not only improved in
regard to robustness and efficiency, but also supports more data sources,
data operations and thus a wider range of scenarios FlexMash 2.0 can be
applied to. During the RMC 2016 we want to show these enhancements
based on a new data mashup scenario.

Keywords: ICWE RMC, Data Mashups, FlexMash, Patterns

1 Goals

The overall goal of the FlexMash [4] approach is creating an easy-to-use data
mashup [2] tool that enables domain-users to extract information from different,
heterogeneous data sources. For example, FlexMash can be used to efficiently and
effectively find information in so called data lakes [3]. Flexibility is an important
aspect of FlexMash. That is, the way of executing a data mashup should depend
on the use case scenario. This enables a tailor-made mashup execution behavior.
For example, if the execution should be especially robust, a workflow engine
should be used for mashup execution, if the execution should be efficient, a more
lightweight execution engine should be used. As a consequence, the execution
environment of FlexMash needs to be highly dynamic.

In summary, the main goals of FlexMash are: (i) data mashup modeling
by domain-users, and (ii) flexible mashup execution dependent on the use case
scenario. How these goals can be achieved is described in the next section.

2 ICWE2016 Rapid Mashup Challenge: FlexMash 2.0

Mashup Execution

Robust

Mash
M;jellij:g » 0* Time-Critical =)
Tool \

Mashup
Mashup Mashup Pattern —/ Result
Modeler Plan Selection &

Combination

) g o Step 2: Step 3/4: Pattern-based Step 5:
Step 1: ,ZZZ’;:.:_SP geie Pattern Transformation & Visualization &
a Selection " Execution Storage

Fig. 1. The FlexMash Method [4]

2 Proposed Solution

We developed the method depicted in Fig. 1 to achieve the described goals.
In the first step, a domain-user models a so called Mashup Plan, a graphical,
abstract model that contains the data sources and data operations to be used
for the mashup. It is important to note that we offer an abstraction of technical
details of data sources by so called Data Source Descriptions (DSD) and of data
operations by so called Data Processing Descriptions (DPDs), that is, a domain-
user only models elements s/he is familiar with. By combining data sources
and operations in a pipes-and-filters manner, domain users can easily model
data mashup scenarios they are interested in without necessary deep technical
knowledge. After modeling of the Mashup Plan, the domain-user can attach it
with so called Transformation Patterns, which can be selected in a pattern catalog.
Transformation Patterns offer a means to domain-expert to influence the way the
data mashup is executed. Those patterns describe non-functional requirements
to be considered during mashup execution. For example, we offer patterns such
as Security, Robustness or Efficiency. Most patterns can be combined, however,
some patterns are not compatible, e.g., the Robustness and Efficiency patterns.
Transformation Patterns can be parameterized to enable a more detailed de-
scription. After the Transformation Patterns are selected, a suitable execution
environment, e.g. an execution engine, are found using so called pattern graphs
as described in [4]. In pattern graphs, patterns are hierarchically structured in
sub-patterns and in implementations. By traversing the pattern graphs, the most
suitable implementation, i.e. mashup execution environment, can be found based
on parameter matching. After the suitable execution environment is found, it
can be set up dynamically using cloud computing deployment approaches such
as TOSCA [5]. The Mashup Plan is then transformed in a suitable execution
format, e.g., by connecting workflow fragments. After that, the data mashup is
executed as modeled in the Mashup Plan. The results can be used for visualiza-
tion in dashboards, analytics, or other value-adding scenarios. In addition to the

ICWE2016 Rapid Mashup Challenge: FlexMash 2.0 3

functionality we presented last year at the RMC, we support more DSDs, DPDs,
i.e., a wider range of scenarios, dynamic mashup provisioning using TOSCA, and
an enhanced, more robust frontend and backend. In addition, we support new
visual analytics nodes that allow human interaction during mashup execution.

3 Level of Maturity

We presented a first prototype of FlexMash at the ICWE Rapid Mashup Challenge
2015, which we further extended with additionally implemented concepts. The
result was a more robust and powerful data mashup tool, which is open source! and
is, e.g., used within the project SitOPT. Most of the functionality is implemented,
however, there are still some limitations. We currently only support a specific,
limited amount of data sources and operations, however, we provide a means
for an easy adding of new ones. Furthermore, currently, we are still working
on a more sophisticated pattern-implementation-matching algorithm based on
the introduced pattern graphs. In our prototype, the implementation of this
algorithm is realized in a straight-forward manner. Our goal is to enhance our
prototype as much as possible until the RMC 2016.

4 Feature Checklist

The following feature checklist is based on [1] and available online?.

— Mashup Type: Data mashups — Targeted End-User: Non Pro-
— Component Type: Data compo- grammers
nents .) — Automation Degree: Semi-
— Rl;lnglme Location: Both Client automation
and Server .
— Integration Logic: Orchestrated Liveness Level: Level 3
integration — Interaction Technique: Visual
— Instantiation Lifecycle: State- Language (Iconic)
less — Online User Community: None
5 Demo

FlexMash is a web-based data mashup tool based on JavaScript (client) and Java
(server) using the modeling framework AlloyUI®. The tool is fully hosted on the
platform-as-a-service provide IBM Bluemix. Currently, we support as data sources:
CSV files, MySQL, PostgreSQL, MongoDB, CouchDB, Text files, RSS Feeds,
and Twitter Feeds. As data operations we support: join, aggregate, analytics

! https://github.com /hirmerpl/FlexMash
2 http://challenge. webengineering.org/feature-checklist/
3 http://www.alloyui.com/

4 ICWE2016 Rapid Mashup Challenge: FlexMash 2.0

FlexMash Builder

Addnode Setting

o
0

@
5
m

o @

; ﬁ
New York /ﬁm \
s 3 Attcles 4

gD

3
§

@ i
fo I3
e
ul
T
b

Fig. 2. Screenshot of the scenario presented at the RMC 2015

(e.g., sentiment, clustering, association rules, visual analytics, ...), merge, and
filter. Furthermore, we provide a pattern catalog for the transformation patterns.
After modeling, the transformation and execution can be invoked through the
modeler’s Ul In our demo, we will model an integration scenario based on the
challenge’s tasks using our graphical data mashup modeling editor and we will
execute the mashup in a pattern-based manner.

Figure 2 depicts the scenario we showed at the ICWE RMC 2015. In this
scenario, Twitter “Tweets” are searched based on keywords extracted from New
York Times articles. Based on these Tweets, the sentiment of people regarding
the corresponding topic can be determined. These information are merged and
visualized. In the last year, we were able to gain important feedback to enhance
our data mashup tool FlexMash 2.0 and created the new version FlexMash 2.
This year, we hopefully have the possibility to present FlexMash 2.0 at the RMC
2016 and gain additional feedback to make FlexMash even better.

References

1. Aghaee, S., Nowak, M., Pautasso, C.: Reusable decision space for mashup tool design.
In: Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems. pp. 211-220. EICS ’12, ACM, New York, NY, USA (2012)

2. Daniel, F., Matera, M.: Mashups - Concepts, Models and Architectures. Data-Centric
Systems and Applications, Springer (2014)

3. Heudecker, N.; White, A.: The data lake fallacy: All water and little substance.
Gartner Report G 264950 (2014)

4. Hirmer, P., Mitschang, B.: FlexMash - Flexible Data Mashups Based on Pattern-
Based Model Transformation. In: Daniel, F., Pautasso, C. (eds.) Rapid Mashup
Development Tools, Communications in Computer and Information Science, vol.
591, pp. 12-30. Springer International Publishing (2016)

5. Hirmer, P., Mitschang, B.: TOSCA4Mashups — Enhanced Method for On-Demand
Data Mashup Provisioning. In: Proceedings of the 10th Symposium and Summer
School On Service-Oriented Computing (2016), submitted

