
Toolet: Web-based tool appropriation for hobby

programmers

Jeremías P. Contell, Oscar Díaz

University of the Basque Country (UPV/EHU), ONEKIN Web Engineering Group,
San Sebastián (Spain)

(jeremias.perez, oscar.diaz)@ehu.es

1 Context & Goals

Technology appropriation is being defined as “the process through which users
adopt, adapt, and then incorporate a system with their practices” [1]. This pro-
cess takes place no matter whether the system is physical or virtual, but it is
specially interesting for Web applications. Rationales are twofold. First, opportu-
nity: the Web is becoming the place where an increasing number of applications
are being migrated and hence, where users undertaken a larger number of their
activities. It can then be expected numerous petitions for adapting Web ap-
plications to the users’ practice specifics. Second, possibility: Web rendering is
“malleable”, i.e. client-side code can be transcoded at the browser using aug-
mentation approaches. In addition, two additional practices are paving the way
forward: APIs and semantic annotations. APIs account for a programatic way
to access complementary functionality that might not be available (or not in the
desired way) in the Web counterpart. On the other side, semantic annotations fa-
cilitate the understanding and the hackability of the client-side code. This opens
an opportunity for Web appropriation.

But this is not enough. Malleability might make Web appropriation possible
but not affordable. And the problem is that appropriation is highly idionsin-
cratic. Unlike Web personalization (thought by designers), Web appropriation
should be mostly conducted by the applications’ users themselves. Indeed, appro-
priation implies adapting a sytem to the user’s practice in ways they might not
be conceived by the application designers. Hence, we see a challenge in describing
Web appropriation on an adequate level of abstraction. The answer very much
depends on both the kind of Web application and the target audience. We focus
on Web tools and hobby programmers. By Web tools is meant Web applications
that support the manipulation of a software artefact through the Web. Exam-
ples of Web tools include Google Docs or editors for different kind of artefacts,
e.g. mind maps1. As for hobby programmers, they are defined as somebody who
spends ten or more hours a month programming, but is not paid primarily to be
a programmer2. This basically means that development should be of a level of
1 https://www.mindmup.com/
2 http://www.itworld.com/article/2702038/application-management/hobbyist-

programmers–don-t-call-us-hobbyists.html



complexity that fits within this ten-hour frame. Unfortunately, if appropriation
of Web tools is conducted in terms of raw JavaScript code, these ten hours will
fall short. Raising the abstraction level and providing tool support is a possible
way ahead. We explore this way through “Toolet”, an editor for Web tool appro-
priation built on top of Google’s Sheet. Next sections describes work-in-progress
with the help of an example: the appropriation of MindMeister3.

2 An appropriation scenario

MindMeister is a popular mind-map drawing tool. MindMeister is thought for

Fig. 1. A MindMeister map: colored leaf nodes are imported from Mendeley document
quotes.

schema drawing and brain storming. At the ONEKIN group, we use intensively
MindMeister for brain storming but also for conducting PhD projects along
Design Science guidelines [2]. This approach guides research projects through
different milestones: define the setting, explicate the problem’s cause, analyze
the problem’s consequences, etc. Students can add new nodes to their maps as
they get acknowledgeable about the different issues. This is the intended use of
mind maps in general, and MindMeister in particular. However, we realize that
quite often nodes originated not from our own insights but by quoting articles.
It goes without saying that research projects start with a thorough literature
review, where problems, their causes and consequences might already be well
3 https://www.mindmeister.com/



documented. The point to be notice is that “nodes” might not always originate
while drawing the mind map (at MindMeister) but when reading articles (e.g.
at Mendeley). Node creation at places other than the map editor might not be
anticipated by MindMeister designers but it turns out of importance to our way
of working. What we wanted was the possibility to create nodes for MindMeister
maps but at places other than MindMeister (e.g. Mendeley). Specifically, we
wanted to highlight problems, causes and consequences when reading articles in
Mendeley, and eventually, move to the MindMeister map, and find the underlined
quotes as nodes hanging from the right places, i.e. the Problem Statement node,
the Causes node or the Consequences node (see Figure 1). The relationship
between a quote and what this quote stands for (i.e. a cause, a consequence, etc)
is set in terms of colors: e.g. a quote in green accounts for the concept node with
green background. Next, we address this scenario with Toolet.

3 Toolet at work

Fig. 2. Toolet main view. Tables’ signatures are hold in the main sheet whereas each
table body is kept into a separated companion sheet.

Toolet conceives Web tools as a set of operations acting upon a set of tables.
Rather than facing the different ways data can be represented, we strive to hide
this heterogeneity through a common tabular representation. In this way, the
operational semantics of new operations are defined in terms of table manipula-
tions.



Fig. 3. API tables: parameters not participating in any pipe become the table’s columns.
Method chains are obtained by annotating API documentation.

Fig. 4. Scrap tables: data scrapped become the table’s columns.



Fig. 5. Operation Enactor: name, GUI element, placement and triggering event.

3.1 Table definition

Table definition is a two-fold process. First, the table signature includes the
column names and the type of the table. Second, the table body holds how
columns are obtained depending on their type, namely:

– API tables, whose columns are obtained through API calls,
– scrap tables, whose columns are obtained by scrapping the HTML code,
– Widget tables, whose columns stand for the state of Web Components in-

troduced as part of the appropriation.

Toolet is realized as a plug-in for Google’s Sheet (see Figure 2). Tables’ signatures
are hold in the main sheet whereas each table body is kept into a separated com-
panion sheet. A button exists for each kind of table. On clicking, Toolet moves
to the corresponding mode: creating a table by annotating API documentation,
creating a table through scraping the tool to be appropriated, or creating a table
that account for a brand-new widget. Table names reflect their origins using a
kind of format notation (origin.type, e.g. mendeley.API). Next, we illustrate the
different modes through the running example.

API tables. Click on the API button for a new browser tap to come up
(“the annotating tab”). From now on, visited pages are augmented with an an-
notator, i.e. a widget for annotating Web data along four main categories: HTTP
request, query parameter, return parameter, and URL parameter. The aim: re-
covering information that permits to populate an API table. In our example, we
would like to obtain quotes from the documents held in a given folder. No sin-
gle Mendeley method provides that. Rather, a chain of method calls is needed.
To obtain such chain, the user first collects information about those methods



through the annotator. Second, a pipe-like approach serves to link one method’s
output parameter with another method’s input parameter Figure 3 provides an
example. Users browse along the Mendeley documentation. When they find the
methods of interest, annotator buttons are used to annotate the method call and
the method parameters. Resulting annotations appear in the annotator tab. The
display of parameters hold anchors from which pipelines can be set. In the ex-
ample, folder method output ID serves to feed the documents method input ID
parameter that stands for the document identifier. Parameters not participating
in any pipe become the table’s columns. This is the case of three parameter:
name, text and color.

Once the annotating tab is closed, Toolet goes back to Google’s Sheet where
the API table is created. At this time, users can change column names at wish.
Figure 2 shows the output for the mendeley.API table. For clarification purposes,
the user change the initial column names name and text into folderName and
quote, respectively. But this is not enough. So far, we obtained the quotes for
the folder’s documents. We need to know from where to hang these quotes: their
parent node. This is obtained through color matching: quotes become children
of color-like nodes. We obtain node colors through the MindMeister API. In
this case, the mindmeister.API table is created with three columns: nodeID,
nodeContent and backgroundColor.

Scrap tables. Click on the Scrap button for a new browser tab (“the XPath
finder tab”) to be opened. The provided URL is taken as the Web tool to be
appropriated. Henceforth, visited pages are augmented with an XPath finder,
i.e. hovering around will highlight different HTML content. Click on the content
of interest for Toolset to obtain the XPath expression. Keep clicking till Toolet
infer an XPath expression that select all HTML nodes of interest. The Finder
will show an HTML representative of the elements being selected. Now, the user
can select which properties will become table columns while Toolet infer the
XPath counterpart. Figure 4 shows the case for three properties: id, text and
background-color. Close the tab for returning to Google’s Sheet. Column names
can be changed at wish.

Widget tables. “Bridging” is often needed to contextualize someone else’s
data/services into the target tool. In some cases, this bridging is idiosyncratic,
i.e. needs to be resolved by the user himself. For our example, which background
colors to use for which concept is set by users. Hence, user interaction is required.
And this is achieved through a widget. A widget is then first characterized by
the data it holds rather than the means to obtain this data from the user. In
our sample, the user should stain nodes through a palette of colors. The use
of the same range of colors in Mendeley and MindMeister serves to set the
mapping between quotes (in Mendeley) and parent nodes (in MindMeister). By
clicking on the Widget button, developers are moved to JSFiddle where the
widget is developed using HTML and JavaScript. This limits programming to
widget development. The rest of the plumbing is taken care by Toolet.



3.2 Operation definition

An operation is a triplet: <name, operationalSemantics, enactor>. The enactor
refers to the means to trigger the operation. This includes the GUI element
(e.g. buttons), its placement (e.g. the page footer) and the triggering event (e.g.
on clicking). Click the Operation button for the Web tool to be displayed in
a separated browser tab. The page is augmented with a a panel for enactor
definition: name, GUI element, placement and event (see Figure 5). Once this tab
is closed, we go back to Toolet’s main view. Next, the operational semantics. This
is defined á la Query By Example (QBE), a GUI-based query language where
users write queries by creating example tables on the screen. Benefits include that
user needs minimal information to get started and the whole language contains
relatively few concepts. QBE is especially suited for queries that are not too
complex and can be expressed in terms of a few tables. This fits our purposes.
In addition, QBE graphical queries can be easily converted to SQL statements,
ready to be processed by the Toolet engine.

In QBE, data needs and data updates are denoted by filling cells with system
constants (e.g. $rootNodeID) or variables (e.g. _nodeID). Selection, insertion,
deletion, and modification of a tuple are specified through the commands P.,
I., D., and U., respectively. Figure 2 provides an example for the operation
importQuotes. Each row stands for a SQL operation:

1. the first row retrieves the nodeContent for the root node (kept in an appli-
cation variable $rootNodeID). This nodeContent holds the node label and,
in this case, should coincide with a Mendeley’s folder,

2. the second row creates a new node for each quote. New quote nodes become
children of the existing color-like nodes. In this case, the operation expand
along different tables, given rise to a table join. Here, we have to select tuples
from three tables with the same value in certain columns. We first retrieve
quotes (and their colors) from the mendeley.API table. Next, we obtain the
color-like node already in the map (from mindmeister.SCRAP).

So captured semantics is then transparently mapped into the corresponding API
calls or HTML scraping counterparts.

4 Conclusions

We described the early stages of Toolet, a Google’s Sheet plug-in to help users to
adapt Web tools to their own practices. The aim is to hide complexity through
a common table view. No matter how data is obtained (through APIs, Web
Scrapping or user interactions), it is all represented as table columns. Next, new
operations, better said, the operational semantics of these operations is specified
using Query By Example.

We believe there will be an increasing pressure to Web appropriation. The
large list of feature requests that queue up in the tools’ Web sites so seems to
suggest. MindMeister is a case in point. Its feature request page holds over a



hundred petitions!!4 The question is how many of these petitions would be self-
satisfied if suitable tools were available. Toolet attempts to provide some first
insights.

References

1. Fidock, J., and Carroll, J. Why Do Users Employ the Same System in So
Many Different Ways? IEEE Intelligent Systems 26, 4 (jul 2011), 32–39.

2. Johannesson, P., and Perjons, E. An Introduction to Design Science. Springer
International Publishing, Cham, 2014.

4 https://support.mindmeister.com/hc/en-us/community/topics/200108207-
MindMeister-Feature-Requests


