
On the Role of Context
in the Design of Mobile Mashups

Valerio Cassani, Stefano Gianelli, Maristella Matera, Riccardo Medana, Elisa
Quintarelli, Letizia Tanca, and Vittorio Zaccaria

Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria

{valerio.cassani,stefano.gianelli}@mail.polimi.it, name.surname@polimi.it

Abstract. This paper presents a design method and an accompanying
platform for the development of Context-Aware Mobile mashUpS (CA-
MUS). The approach is characterized by the role given to context as a
first-class modeling dimension used to support the identification of the
most adequate resources that can satisfy the users’ situational needs and
the consequent tailoring at runtime of the provided data and functions.

Keywords: Mobile Mashups, Mashup Modeling, Context Modeling, Context-
aware Mobile Applications, GraphQL

1 Introduction

The data deluge we are confronting today takes everyone to continuously search
and discover new information. The opportunity to access a large amount of
information, however, does not always correspond to an increase of knowledge.
Many times, indeed, one does not know how to filter data “on-the-fly” to obtain
the information that is the most suitable to the current context of use. This
is even more critical when using mobile devices that are still characterized by
limited capabilities (memory, computational power, transmission budget).

Given this evidence, our research focuses on the definition of methods and
tools for the design and development of Context-Aware Mobile mashUpS (CA-
MUS)[1] that are based on a set of high-level abstractions for context and mashup
modeling. In particular, we have defined a novel design methodology and related
tools for fast prototyping of mobile mashups, where context becomes a first-class
modeling dimension. In comparison to other approaches to mashup design [2],
the composition activity and, more specifically, the selection of services are not
exclusively driven by the functional characteristics of the available services or
by the compatibility of their input and output parameters. Rather, the initial
specification of context requirements enables the progressive filtering of services
first and then the tailoring of service data to support the final situations of use.

2 Methodology

Figure 1 represents the general organization of the CAMUS design framework
and highlights the flow of the di↵erent activities and related artifacts that en-



Fig. 1. Organization of the CAMUS framework, highlighting the main system compo-
nents and the supported design and execution activities.

able the transition from high-level modeling notations to running code. The first
step in the design process is the specification of context requirements. All the
aspects that characterize the di↵erent contextual situations, i.e., the dimensions
contributing to context, are represented by means of the so-called Context Di-
mension Model [3], which provides the constructs to define at design-time the
Universal Context Dimension Tree (Universal CDT ), i.e., the set of possible con-
texts of use for a given domain of interest, expressed as a hierarchical structure
(see Figure 2 for an ecample). Then di↵erent activities follow as reported in the
following.
Creation of the Service Ecosystem. The platform administrator is in charge
of managing the CAMUS server. One of the main roles is to create and maintain
the service repository. S/He registers distributed resources (remote APIs or in-
house services) into the platform, by creating descriptors that specify

– How the resources are to be invoked, e.g, the service endpoint, its operations
and input parameters. In this phase, some parameters can be bound to wrap-
pers that perform transformations from symbolic context values gathered at
runtime to corresponding numerical service input.

– The schema of the returned service responses. To ensure homogeneity of data
formats, needed to merge the data that must be visualized by the final app,
the response schema of each registered service is annotated with terms (e.g.,
title, description, address) indicating classes of attributes, according to a
vocabulary that is defined and maintained in the service repository. These
annotating terms have a double role: when the mashup is defined they allow
the designer to select service attributes by reasoning on abstract categories,



Associa@on'of'services'with'CDT'nodes'
Associa@on'of'relevant'core'services'with'primary'dimension'nodes'

Primary'
dimension(s)'

•  Primary'dimensions'are'the'ones'that'
content'is'provided'for'

•  Other'dimensions'mainly'provide'filters''

Fig. 2. An excerpt of a Context Dimension Tree for representing usage contexts and
association of services to primary dimensions.

instead of specific attributes resulting from service queries; at run time, they
facilitate merging di↵erent result sets, since it is easier to identify attributes
that refer to the same entity properties.

Universal CDT augmentation. The administrator also specifies the Universal
CDT. In order to support the context-aware selection of services at runtime,
as reported in Figure 2 s/he also augments the context representation with
mappings between the identified context elements and the services registered in
the platform.

Mashup Design. The mashup designer starts from the image of the available
resources represented by the augmented Universal CDT and, using a Design
Visual Environment, defines a Tailored CDT by further refining the selection
of possible contexts and the mapping with services (both core and support), to
fulfill the needs and preferences of the specific users or user groups.

Given the services associated with a given context dimension (e.g., all the
services providing data on restaurants associated with the food&drink context
dimension) the designer can select the categories of attributes (i.e., the annotat-
ing terms specified at service-registration time) to be visualized in the mobile
app. As schematically represented in Fig. 3, this selection is operated visually,
according to a composition paradigm for mobile mashup creation already de-
fined in [4]. The designer drags and drops the semantic terms associated with
the attributes of the service response. A “virtual device” provides an immedi-
ate representation of how the final app will be shown on the client device. In
addition, the designer can include in the mashup support services providing the
user with further information. All the visual actions are translated by the de-
sign environment in a JSON-based mashup schema, which specifies rules that



Fig. 3. Schematic representation of the visual mapping activities to associate service
attribute classes to elements of the final app UI.

at run-time guide the instantiation of the resulting app and the creation of its
views.

In addition to this, s/he can refine the association with support services,
where needed, to enrich the user experience (e.g., provide transport indications to
reach a restaurant, or extending the core content with description of places taken
fromWikipedia). Support services are also context dependent: for instance, if the
user expresses that s/he is in a situation where s/he wants to use “transportation
by car”, the system provides route information; otherwise, if s/he selects “public
transport” it suggests a bus line.

App Execution. The CAMUS (app) users are the final recipients of the mo-
bile app that o↵ers a di↵erent bouquet of content and functions in each di↵erent
situation of use. When the app is executed, the context elements that charac-
terize the current situation, identified by means of a client-side sensor wrapper,
are communicated to the server; this, in turn, chooses the correct services to
be invoked and returns data in an integrated format. The mashup schema cre-
ated by the designer is interpreted locally (by means of a Schema Interpreter)
and the generated views are populated with the returned data. The platform
indeed exploits generative techniques: modeling abstractions guide the design of
the final applications, while generative layers mediate between high-level visual
models and low-level engines that execute the final mashups. Execution engines,
created as hybrid-native applications for di↵erent mobile devices, then make it
possible the interpretation and pervasive execution of schemas.



3 Platform Architecture

The architecture of the final system is server-centric. The framework used to
develop the Server is Node.js and the database used is MongoDB. The Server’s
main functionality is to provide the integrated result set to the mobile app. This
process involves i) the analysis of the user’s context to select the services to be
queried and, ii) querying the selected services and transforming their results into
an integrated data set to be rendered by the mobile app.

The Server exposes several endpoints to enable the execution of service
queries. The main API is compliant with the GraphQL API specification [5],
which o↵ers a layer enforcing a set of custom-defined typing rules on the data
sent and received via HTTP. Besides, it provides a flexible way to specify the
response format, by making it easier to support di↵erent generations of APIs.

The Visual Design Environment consists of a suite of Web applications to: i)
register new services, ii) specify visually (and automatically generate an inter-
nal representation of) the CDTs and the associations of services with pertinent
nodes, and iii) design the final mashups and generate their schema.

The Client App manages the interaction of the end-user with the whole
system. During its initialization, the app loads the user CDT and the mashup
schemas to be rendered. It is implemented using React Native [6], a framework
recently introduced by Facebook to streamline the production of cross-platform
mobile apps. The app logic is written in Javascript and is agnostic with respect
to the target platform. A typical request from the Client App is composed of
a JSON payload that describes the context and a specification of the format of
the data that is expected by the client. The request is thus processed through
the following steps:

– A Context Manager at the server side parses the context and “decorates” it
with all the Augmented UCDT information (services, ranks, etc.) related to
its elements.

– Based on analyzed context, a Service Selection component selects the services
to be queried.

– AQuery Handler queries the selected services by using service-specific bridges
that wrap the retrieved result sets and transform them into a common inter-
nal representation that complies with the semantic terms associated to the
di↵erent service attributes. This internal representation enables merging the
di↵erent data sets based on attributes associated with the same terms.

– Finally, possible duplicates are removed and the activation of support ser-
vices - if any, is bound to the selection of specific attributes in the integrated
result set, as defined by the mashup designer when creating the mashup.

Once built, the integrated data set is sent back to the app. The instantiation
of views is driven by the JSON mashup schema previously downloaded and uses
the React Native cross-platform technology to build the resulting user interface
elements.



4 Feature Checklist

– Mashup Type: Data and UI mashups
– Component Types: Data Components, Logic components, UI components
– Runtime Location: Both Client and Server
– Integration Logic: Orchestrated integration
– Instantiation Lifecycle: Long-living

Mashup Tool Feature Checklist:

– Targeted End-User: Local Developers
– Automation Degree: Full Automation
– Liveness Level: Level 3 (Automatic Compilation and Deployment, requires

Re-initialization)
– Interaction Technique: Visual Language (Iconic), WYSIWYG
– Online User Community: None.

References

1. Corvetta, F., Matera, M., Medana, R., Quintarelli, E., Rizzo, V., Tanca, L.: Design-
ing and developing context-aware mobile mashups: The CAMUS approach. In: Proc.
of ICWE 2015, Rotterdam, The Netherlands, June 23-26, 2015. (2015) 651–654

2. Daniel, F., Matera, M.: Mashups - Concepts, Models and Architectures. Data-
Centric Systems and Applications. Springer (2014)

3. Bolchini, C., Curino, C., Orsi, G., Quintarelli, E., Rossato, R., Schreiber, F.A.,
Tanca, L.: And what can context do for data? Commun. ACM 52(11) (2009)
136–140

4. Cappiello, C., Matera, M., Picozzi, M.: A UI-Centric Approach for the End-User
Development of Multidevice Mashups. TWEB 9(3) (2015) 11

5. Facebook: GraphQL. Draft RFC Specification, https://facebook.github.io/

graphql (2015)
6. Facebook: React Native. React Native o�cial page, https://facebook.github.

io/react-native (2015)


